- Be able to calculate the derivatives of all of the basic functions. These include...
 - The derivative of a constant is zero
 - x^n (where *n* is a real number)
 - n^x (where *n* is a real number) <u>note</u>: e^x is a special case of this rule (recall: $\ln(e)=1$)
 - Trigonometric functions
 - sin(x)
 - $\cos(x)$
 - tan(x)
 - Inverse Trigonometric functions
 - $\operatorname{arcsin}(x)$
 - $\arccos(x)$
 - $\arctan(x)$
 - $\ln(x)$
 - $\sinh(x)$, $\cosh(x)$, $\tanh(x)$
 - You will need to use algebra and basic trig identities to do some of these problems. Here are a couple of the important trig identities:
 - Pythagorean identities: $sin^2(x) + cos^2(x) = 1$ (and 4 other versions)
 - $\tan(x) = \sin(x)/\cos(x)$, $\sec(x) = 1/\cos(x)$, etc...
- Be able to calculate the derivatives of sums, differences, products, quotients, and compositions of the basic functions. To achieve this, you must use...
 - $[c \cdot f(x)]' = c \cdot f'(x)$ (where *c* is a constant)
 - Derivatives of sums and differences
 - [f(x) + g(x)]' = f'(x) + g'(x)
 - [f(x) g(x)]' = f'(x) g'(x)
 - Product Rule $[f(x) \cdot g(x)]' = f'(x)g(x) + f(x)g'(x)$
 - Quotient Rule $\left[\frac{f(x)}{g(x)}\right]' = \frac{f'(x)g(x) f(x)g'(x)}{[g(x)]^2}$
 - Chain Rule $[f(g(x))]' = f'(g(x)) \cdot g'(x)$

3.7 Implicit differentiation

Remember:

•
$$\frac{d}{dx}(x) = 1$$

• $\frac{d}{dx}(y) = \frac{dy}{dx}$
• $\frac{d}{dx}[f(y)] = f'(y) \cdot \frac{dy}{dx}$

3.8 Hyperbolic functions: sinh, cosh, tanh.

In addition to knowing the derivatives of the hyperbolic functions, know:

- The formulas for each of these functions (fractions involving e^x)
- Basic identites such as:
 - tanh(x)=sinh(x)/cosh(x)
 - $\cosh^2(x) \sinh^2(x) = 1$
- 3.9 Local linearization
 - Be able to use f(x) and f'(x) to find the local linearization (a.k.a. equation of the tangent line) of f(x) at a given x-value.
 - Be able to use your local linearization to make approximations of f(x).
 - Be able to use and interpret the error function E(x) as it pertains to these approximations.
- 3.10 Theorems about differentiable functions
 - Mean Value Theorem
 - Increasing Function Theorem
 - Constant Function Theorem
 - The Racetrack Principle