- Be able to calculate the derivatives of all of the basic functions. These include...
- The derivative of a constant is zero
- $x^{n} \quad$ (where n is a real number)
- n^{x} (where n is a real number) note: e^{x} is a special case of this rule (recall: $\left.\ln (e)=1\right)$
- Trigonometric functions
- $\sin (x)$
- $\cos (x)$
- $\tan (x)$
- Inverse Trigonometric functions
- $\arcsin (x)$
- $\arccos (x)$
- $\arctan (x)$
- $\ln (x)$
- $\sinh (x), \cosh (x), \tanh (x)$
- You will need to use algebra and basic trig identities to do some of these problems. Here are a couple of the important trig identities:
- Pythagorean identities: $\sin ^{\wedge} 2(\mathrm{x})+\cos ^{\wedge} 2(\mathrm{x})=1$ (and 4 other versions)
- $\tan (x)=\sin (x) / \cos (x), \sec (x)=1 / \cos (x)$, etc \ldots
- Be able to calculate the derivatives of sums, differences, products, quotients, and compositions of the basic functions. To achieve this, you must use...
- $[c \cdot f(x)]^{\prime}=c \cdot f^{\prime}(x)$ (where c is a constant)
- Derivatives of sums and differences
- $[f(x)+g(x)]^{\prime}=f^{\prime}(x)+g^{\prime}(x)$
- $\quad[f(x)-g(x)]^{\prime}=f^{\prime}(x)-g^{\prime}(x)$
- Product Rule $[f(x) \cdot g(x)]^{\prime}=f^{\prime}(x) g(x)+f(x) g^{\prime}(x)$
- Quotient Rule $\left[\frac{f(x)}{g(x)}\right]=\frac{f^{\prime}(x) g(x)-f(x) g^{\prime}(x)}{[g(x)]^{2}}$
- Chain Rule $[f(g(x))]^{\prime}=f^{\prime}(g(x)) \cdot g^{\prime}(x)$
3.7 Implicit differentiation

Remember:

- $\frac{d}{d x}(x)=1$
- $\frac{d}{d x}(y)=\frac{d y}{d x}$
- $\frac{d}{d x}[f(y)]=f^{\prime}(y) \cdot \frac{d y}{d x}$
3.8 Hyperbolic functions: sinh, cosh, tanh.

In addition to knowing the derivatives of the hyperbolic functions, know:

- The formulas for each of these functions (fractions involving $\mathrm{e}^{\wedge} x$)
- Basic identites such as:
- $\tanh (x)=\sinh (x) / \cosh (x)$
- $\cosh ^{\wedge} 2(x)-\sinh ^{\wedge} 2(x)=1$

3.9 Local linearization

- Be able to use $f(x)$ and $f^{\prime}(x)$ to find the local linearization (a.k.a. equation of the tangent line) of $f(x)$ at a given x-value.
- Be able to use your local linearization to make approximations of $f(x)$.
- Be able to use and interpret the error function $E(x)$ as it pertains to these approximations.
3.10 Theorems about differentiable functions
- Mean Value Theorem
- Increasing Function Theorem
- Constant Function Theorem
- The Racetrack Principle

